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ABSTRACT

Ring conservation was observed in the first catalytic intermolecular hydroarylation of methylenecyclopropanes via C-H bond functionalization,
a remarkable reactivity mode for a transformation proceeding through (cyclopropylcarbinyl)metal intermediates.

Transition-metal-catalyzed additions of arenes to C-C
multiple bonds, hydroarylation reactions, have received
considerable attention as an ecologically and economically
benign approach to the direct functionalization1 of aromatic
C-H bonds. Consequently, a number of valuable protocols
for intermolecular hydroarylations of alkenes, alkynes, and
allenes have been developed,2 with ruthenium-catalyzed3

directed4 C-H bond functionalizations being among the most
powerful strategies.5,6

The chemistry of highly strained methylenecyclopropanes7

is attractive because their enhanced reactivities allow to probe
fundamental concepts in organic chemistry and enable the

development of efficient synthetic methodologies. In par-
ticular, (transition) metals were found useful for the conver-
sion of these highly strained starting materials.8 Notably,
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these transformations proceeded almost exclusively via
opening of at least one cyclopropane ring.9 Herein, we report
on the development of unprecedented intermolecular10 hy-
droarylations of methylenecyclopropanes through C-H bond
functionalizations, surprisingly occurring with conservation
of all cyclopropane rings.

At the outset of our studies, we tested ruthenium-
catalyzed11 hydroarylations of methylenecyclopropane 2,
employing [RuCl2(cod)]n as precatalyst12 modified with a
representative set of commonly used ligands (Figure 1). Due

to cyclopropane ring-opening, triaryl phosphines 4-6 pro-
vided rather unsatisfactory results (Table 1, entries 1-3).13

On the contrary, more selective catalysis was achieved
with electron-rich phosphines 7-10 (entries 4-7), with
monophosphine biphenyl ligand 1114 providing superior

results (entries 8 and 9). Remarkably, the anti-Markovnikov
addition of arene 1a occurred with complete conservation
of the three-membered ring, yielding cyclopropane derivate
3a highly selectively.

The optimized catalyst enabled an efficient C-H bond
functionalization of pyridine 1b as well, giving rise to desired
product 3b with excellent chemo- and regioselectivity
(Scheme 1).

Therefore, we set out to probe the more challenging
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Figure 1. Ligands employed for catalytic hydroarylations.

Table 1. Ruthenium-Catalyzed Hydroarylation of 2a

entry L 1a (%) 3a (%)

1 PPh3 (4) 97
2 rac-BINAP (5) 97
3 dppf (6) 96
4 PCy3 (7) 96 <5
5 8 95 <5
6 9 80 17
7 10 53 46
8 11 39 53
9 11 40 54b

a Reaction conditions: 1a (1-2 mmol), 2 (3 equiv), [RuCl2(cod)]n (5
mol %), L (10 mol %), 1,4-dioxane (3 mL), 120 °C, 48 h; cod )
cis-1,4-cyclooctadiene. b NMP (3 mL) as solvent.

Scheme 1. Ruthenium-Catalyzed Hydroarylation with Pyridine
1b

Scheme 2. Ruthenium-Catalyzed Hydroarylation of
Bicyclopropylidene 12
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reaction conditions, these substrates were converted into the
corresponding cis-adducts 13a and 13b, as well as 14,
respectively, in high isolated yields.

Importantly, X-ray diffraction analyses of novel products
13a, 13b (Figure 2), and 14 (Figure 3) revealed that all three-

membered rings remained intact during the C-H bond
functionalization reactions (Supporting Information).16

Since the high selectivity of our novel ruthenium catalyst
enabled C-H bond functionalizations to occur with retention
of cyclopropane moieties, we became interested in testing
its working mode. Thus, we subjected deuterium labeled
pyridine 1a-[D5] to the reaction conditions for the hydroary-
lation of alkene 2 (Scheme 3). Interestingly, deuterium

incorporation into the cyclopropane moiety of product 3a
was found to be incomplete. Moreover, recovered starting
material revealed a regioselective deuterium-proton ex-
change17 at the ortho-position of pyridine 1a-[D5].

Notably, hydroarylation of bicyclopropylidene (12) with
pyridine 1a-[D5] highlighted a regioselective deuterium-
proton exchange as well, indicating that C-H bond activation
is not rate-limiting (Scheme 4). In these deuterium-proton

exchange reactions, starting materials 2 and 12, respectively,
served most likely as proton donors.18

Based on our observations, we propose a mechanistic
rationale for ruthenium-catalyzed hydroarylations of meth-
ylelencyclopropanes depicted in Scheme 5. Coordination of
the catalytically competent ruthenium complex 1519,20 ini-
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Figure 2. Molecular structures of pyridines 13a (top) and 13b
(bottom) in the crystal.16

Figure 3. Molecular structure of pyridine 14 in the crystal.16

Scheme 3. Ruthenium-Catalyzed Hydroarylation of Alkene 2
with Pyridine 1a-[D5] (Dinc ) 2H Incorporation)

Scheme 4. Ruthenium-Catalyzed Hydroarylation of Alkene 12
with Pyridine 1a-[D5] (Dinc ) 2H Incorporation)
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tiates a rapid and reVersible C-H bond activation, providing
ruthenacycle 17. Subsequently, cyclometalated complex 17
adds to alkene 2. Reductive elimination from complex 18
yields the desired product 3a, thereby regenerating the
catalytically active species 15.

The rate of the final reductive elimination in the catalytic
cycle is at least of the order as the one observed for the well-
known, very fast (cyclopropylmethyl)metal-to-homoallyl-
metal rearrangement.8c,21 The latter reorganization, along
with a subsequent �-hydride elimination, results in the
formation of buta-1,3-dienes as byproduct (see Supporting
Information).21c–f When using 1a-[D5] as substrate, the
generated [Ru-D] intermediate is, therefore, converted into
the corresponding [Ru-H] complex, which likely accounts
for the observed deuterium-proton exchange reactions.

In conclusion, we have developed the first protocol for
intermolecular hydroarylations of highly strained methyl-
enecyclopropanes via C-H bond functionalizations. Al-
though these transformations involved (cyclopropylcarbi-
nyl)metal intermediates, the high selectivity of our new
catalytic system resulted in complete retention of the
cyclopropane moieties in the products. This unique reactivity
pattern is a strong testament for the mild reaction conditions
of ruthenium-catalyzed C-H bond functionalizations.
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Scheme 5. Proposed Catalytic Cycle for Hydroarylations of
Methylenecyclopropanes
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